(2y)^2+y^2=25

Simple and best practice solution for (2y)^2+y^2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y)^2+y^2=25 equation:



(2y)^2+y^2=25
We move all terms to the left:
(2y)^2+y^2-(25)=0
We add all the numbers together, and all the variables
3y^2-25=0
a = 3; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3·(-25)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*3}=\frac{0-10\sqrt{3}}{6} =-\frac{10\sqrt{3}}{6} =-\frac{5\sqrt{3}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*3}=\frac{0+10\sqrt{3}}{6} =\frac{10\sqrt{3}}{6} =\frac{5\sqrt{3}}{3} $

See similar equations:

| 9m=4(12-m) | | 1,5x+6=20 | | 2(3x)=56 | | 8x+10=170 | | t•5/6=4 | | 7x+41=3x+13 | | 8x+30=-7 | | -19k-12k-8k+17k=18 | | 8x+2-3x-5=11x+7 | | 12+4(z-3)=-5z+1 | | 8x^2+196=0 | | 4x3+30x+8=34 | | 0=7X2+16x-48 | | -x-7=2x+14 | | -8+3p=p+4 | | 12q-2q-4q-q+2q=14 | | X+5+x+8=34 | | 6x-4+-6+14x=130 | | -4-3p=-2+p | | a^2+28^2=34^2 | | p+7-5=-1003p | | 7/10a=1/10a+2/5 | | 2x-2x+x=17 | | 6+6x=4x+4x | | (3-2g)=0 | | 5h+2h-2h=20 | | x^2+80-15x=180 | | 20x^2-84x-216=0 | | -6k+2=10-4k | | 15x+60-2+2x-x-35=14x+75 | | 0.4(w-7)=18 | | 6x=-3(-2x+3) |

Equations solver categories